APPENDIXI

Relative Capital Cost Comparison for Division Street Corridor Study Technical Memo

ENGINEERING . PLANNING . ENVIRONMENTAL SCIENCES

TECHNICAL MEMORANDUM

DATE:	January 11, 2021
TO:	Spokane Transit Authority
FROM:	Patrick Krych
SUBJECT:	Relative Capital Cost Comparison for Divsion Street Corridor Study CC:
	Darby Watson Morgan Stumpf Alicia McIntire

PROJECT NUMBER: 374-2941-001
PROJECT NAME: Division Street Corridor Study

Cost Estimate Overview

Parametrix has developed a high-level relative cost comparison of the Division Street Corridor Study. Four project concept scenarios were developed for alternative screening. These scenarios include bus rapid transit corridor and roadway improvements. The street configuration varies based on the scenario. These alternative scenarios include:

- Scenario C1 = Center-Running Alternative
- Scenario S1 = Side-Running A Alternative
- Scenario S2 = Side-Running B Alternative
- Scenario S3 = Side-Running C Alternative

The intent of the cost estimate is to compare corridor alternative scenarios using range of magnitude costs. This tech memo summarizes the cost estimate approach and provides backup documentation for the cost estimates. The construction costs along with associated project contingencies and known project costs are described in the below sections. A cost estimate summary is attached, along with a cost estimate backup information for each scenario.

It should be noted the estimates are at a very high level which can lead to wide variations in estimated costs. The estimates were based on alignment information and quantity information is very limited at this early stage of project.

Construction Cost Estimate:

The basis of the cost estimate is based on the planning level cross-sections. The cross sections were developed to depict the desired lane configurations for the various scenarios and segments of the corridor.

Using these cross sections, costs were assigned to the known construction elements and allowances for some of the unknown construction elements were assigned. In addition to the allowances, a large contingency of 50% was applied due to the early level of development and unknown components of the project. All costs are high level and estimated on a per mile basis.

General Transportation: cross-section items known and included in the cost estimate include:

- Removal items
- Earthwork (cut/fill)
- Grind/inlay (per area with depth identified)
- New roadway construction (per area with section identified)
- Asphalt concrete pavement
- Portland cement concrete pavement
- Aggregate base
- Curb
- Sidewalk
- Multiuse path
- Drainage/Stormwater and utilities - allowance per mile.
- Traffic items including Striping/pavement markings - allowance per mile.
- Traffic Signal(s) - new and modifications - allowance per signalized intersection.
- Transit: discipline items included:
- Transit Stations

Unit cost pricing for each of the known construction elements were determined using historical bid analysis information and the recent bid tabs for the Central City Line project.

Right of way Acquisition

For this estimate, it was assumed there was sufficient right of way throughout the corridor for all but one of the alternatives. The estimate includes right of way costs for Scenario C (center running) at each of the transit stations. The ROW cost was estimated at 5000 sf per station (10'x200' each to accommodate left turn pocket and center station platform, plus transition) at $\$ 40 /$ sf based on recent estimates for commercial property on Division Street, using Zillow estimates.

Professional Services

Professional services include allowances for preliminary engineering, final design, permitting, construction management. These allowances vary based on the scope of work. Suggested allowances are shown below and have been included in the current estimate:

- Preliminary Engineering and Environmental Review - 8\%
- Final Design-10\%
- Permitting - 5\%
- Construction Management - 10\%

Project Costs

Total project costs for each scenario were developed by combining the construction cost, ROW acquisition, and professional services. For the purpose of the alternative screening, refer to Attachment A Summary cost comparison.

Station programming such as kiss and rides, park and ride lots, operator facilities or fleet vehicles, charging or other technologies were not included in the estimates. In addition, it is known that the existing operations and maintenance base cannot accommodate the additional fleet that would be added to serve this new corridor. These costs are also not included in the cost estimates until additional information in known about the potential base expansion.

Attachments

Attachment A - Summary Cost Comparison
Attachment B - Backup Cost Estimates per Scenario

Relative Capital Costs based on Concept level Cross-Sections
PROJECT COST COMPARISON SUMMARY

	Scenario C1		Scenario S1		Scenario S2		Scenario S3	
	Center-Running Alternative		Side-Running A Alternative		Side-Running B Alternative		Side-Running C Alternative	
Mainline	\$	83,000,000	\$	72,000,000	\$	73,000,000	\$	71,000,000
Ruby/Division couplet	\$	48,000,000	\$	37,000,000	\$	54,000,000	\$	49,000,000
Total approximate cost	\$	131,000,000	\$	109,000,000	\$	127,000,000	\$	120,000,000

Assumptions:
This estimate is based on planning level cross sections and 0\% design
Mainline: Estimated from Cleveland Ave (north end of couplet section) - to North Division Y, approximately 3.8 miles
Couplet: River to Cleveland approximately 1.4 miles
Vehicle costs are not included
Maintenance Base upgrades are not included
Technology and Charging costs are not included in the estimate

Assumptions:

1. Curb, gutter \& sidewalk - swale on one side will be preserved.
2. Other side C\&G will be removed and replaced at wider limit.
3. Bus (BST) lanes to be reconstructed with PCC pavement. Assume $12.5^{\prime \prime}$ PCC over $10^{"}$ CSBC
4. Bicycle lane to be curb separated from traffic on right
5. Swale on Ruby will be reconstructed

[^0]1. Curb, gutter \& sidewalk on one side will be preserved.
2. Other side $C \& G$ will be removed and replaced at wider limit.
3. Bus (BST) lanes to be reconstructed with PCC pavement. Assume 12.5 " PCC over 10 " CSBC
4. Swale not shown, but used only for stormwater estimate

Assumptions:
Curb, gutter \& sidewalk - swale on one side will be preserved.
Other side $C \& G$ will be removed and replaced at wider limit.
3. Pavement section is suitable for grind and overlay for vehicle lanes
4. Bus (BST) lanes to be reconstructed with PCC pavement. Assume $12.5^{\prime \prime}$ PCC over 10 " CSBC
5. Bicycle lane to be curb separated from traffic on right
6. No R/W for right side stations \& no other R/W estimated
7. Swale not shown, but used only for stormwater estimate

Side-Running A Alternative

Side Right Division Section	(feet)			
Existing Pavment width			80	
Existing Right of Way width			100	estimated avg
Back of walk to back of walk Existing sidewalk-swale-C\&G			88	estimated avg
			0	
		Lanes		
Proposed section	HMA	5	55	2-PCC, 4 HMA, 1 center HMA lane
	PCC	2	24	
C\&G			4	
Curb separated Bicycle lane			0	
Roadside swale - reconstructed			8	Does not currently exist, but added as a costing measure for storm, may not be feasible
Cement Conc. Sidewalk			5	
			96	

Opinion of Project Cost - Planning 0% complete
MAINLINE - SCENARIO S

Standard Item Description	Unit of Measure	Qty/MILE	Unit Price \$			\$ Amount	Notes
PREPARATION							
PLANING BITUMINOUS PAVEMENT (3" THICK)	SY	32267	\$	5	\$	161,333	
REMOVING CEMENT CONC. CURB AND GUTTER	LF	8560	\$	20	\$	171,200	
REMOVING CEMENT CONC. SIDEWALK	SY	4756	\$	20	\$	95,111	
SAWCUTTING FLEXIBLE PAVEMENT	LF	10560	\$	5	\$	52,800	
GRADING					\$	-	
ROADWAY EXCAVATION INCL. HAUL (FOR PCC LANE,SW, AND SWALE)	CY	10120	\$	60	\$	607,200	
CEMENT CONCRETE PAVEMENT							
CEMENT CONCRETE PAVEMENT 12.5 INCH THICK	SY	14080	\$	120	\$	1,689,600	
FURNISHING CONCRETE FOR CEMENT CONCRETE PAVEMENT	CY	4881	\$	225	\$	1,098,240	
HOT MIX ASPHALT							
PREPARATION OF UNTREATED ROADWAY	SY	14080	\$	2	\$	28,160	
CRUSHED SURFACING TOP COURSE (10"BELOW PCC)	CY	3910	\$	65	\$	254,121	
CSTC FOR SIDEWALK AND DRIVEWAYS	CY	323	\$	65	\$	20,973	
HMA CL. $1 / 2 \mathrm{IN}$. PG 70-28, 3 INCH THICK	TON	5512	\$	75	\$	413,417	
TRAFFIC							
CEMENT CONCRETE TRAFFIC CURB	LF	0	\$	30	\$	-	Center turn lane, no curbed channelization
CEMENT CONCRETE CURB AND GUTTER	LF	8560	\$	30	\$	256,800	Assume between the curbs
GENERIC STRIPING, INCL MARKINGS	LF	5280	\$	40	\$	211,200	
TRAFFIC ALLOWANCE	LS	1	\$	50,000	\$	50,000	
OTHER							
CEMENT CONCRETE SIDEWALK	SY	2933	\$	105	\$	308,000	
					\$	-	
					\$	-	
UTILITIES							
ADJUST MANHOLE (INCLUDES DRAINAGE STRUCTURE, VALVE BOX)	EACH	100	\$	2,000	\$	200,000	estimated based on sample mile on Division City GIS
UTILITY ALLOWANCES	LS	1	\$	50,000	\$	50,000	
STORMWATER ALLOWANCE (Based on Swale construction which may not be feasible)							
	SY	4693	\$	35	\$	164,267	
PER MILE SUB-TOTAL					\$	5,832,422	
Length of SEGMENT CLEVELAND TO Y	MI	3.8			\$	22,163,202	

Notes
Assume Curb, gutter \& sidewalk on one side will be preserved
The other side $C \& G$ will be removed and replaced at wider limit.
Assume pavement section is suitable for grind and overlay for vehicle lanes
Bus (BST) lanes to be reconstructed with PCC pavement. Assume $12.5^{\prime \prime}$ PCC over 10 " CSBC
5. Bicycle lane to be curb separated from traffic on right
6. No R/W for right side stations \& no other R/W estimated
7. Swale not shown, but used only for stormwater estimate

Opinion of Project Cost - Planning 0\% complete
COUPLET-SCENARIO S2

Standard Item Description	Unit of Measure	Qty/MILE	Unit Price \$			\$ Amount	Notes
PREPARATION							
PLANING BITUMINOUS PAVEMENT (3" THICK)	SY	21120	\$	5	\$	105,600	
REMOVING CEMENT CONC. CURB AND GUTTER	LF	5280	\$	20	\$	105,600	
REMOVING CEMENT CONC. SIDEWALK	SY	2933	\$	20	\$	58,667	
SAWCUTTING FLEXIBLE PAVEMENT	LF	5280	\$	5	\$	26,400	
GRADING					\$	-	
ROADWAY EXCAVATION INCL. HAUL (FOR PCC LANE,SW, AND SWALE)	CY	10120	\$	60	\$	607,200	
CEMENT CONCRETE PAVEMENT							
CEMENT CONCRETE PAVEMENT 12.5 INCH THICK	SY	14080	\$	120	\$	1,689,600	
FURNISHING CONCRETE FOR CEMENT CONCRETE PAVEMENT	CY	4881	\$	225	\$	1,098,240	
HOT MIX ASPHALT							
PREPARATION OF UNTREATED ROADWAY	SY	14080	\$	2	\$	28,160	
CRUSHED SURFACING TOP COURSE (10"BELOW PCC)	CY	3910	\$	65	\$	254,121	
CSTC FOR SIDEWALK AND DRIVEWAYS	CY	323	\$	65	\$	20,973	
HMA CL. $1 / 2 \mathrm{IN}$. PG 70-28, 3 INCH THICK	TON	4811	\$	75	\$	360,800	
TRAFFIC							
CEMENT CONCRETE TRAFFIC CURB	LF	0	\$	30	\$	-	No islands in this segment
CEMENT CONCRETE CURB AND GUTTER	LF	5280	\$	30	\$	158,400	one side
GENERIC STRIPING, INCL MARKINGS	LF	5280	\$	20	\$	105,600	
TRAFFIC ALLOWANCE	LS	1	\$	50,000	\$	50,000	
OTHER							
CEMENT CONCRETE SIDEWALK	SY	2933	\$	90	\$	264,000	
					\$	-	
					\$	-	
UTILITIES							
ADJUST MANHOLE (INCLUDES DRAINAGE STRUCTURE, VALVE BOX)	EACH	100	\$	2,000	\$	200,000	estimated based on sample mile on Division City GIS
UTILITY ALLOWANCES	LS	1	\$	50,000	\$	50,000	
STORMWATER ALLOWANCE (Based on Swale construction which may not be feasible)	SY	4693	\$	35	\$	164,267	
PER MILE SUB-TOTAL					\$	5,347,627	
LENGTH OF SEGMENT (RUBY)	MI	1.4			\$	7,486,678	

TOTAL COST \quad 31,791,015

Assumptions:

1. Curb, gutter \& sidewalk - swale on one side will be preserved.
2. Other side $C \& G$ will be removed and replaced at wider limit.
3. Pavement section is suitable for grind and overlay for vehicle lanes
4. Bus (BST) lanes to be reconstructed with PCC pavement. Assume $12.5^{\prime \prime}$ PCC over 10 " CSBC
5. Bicycle lane to be curb separated from traffic on left
6. Swale not shown, but used only for stormwater estimate

Opinion of Project Cost - P
COUPLET - SCENARIO S2
DIVISION

Standard Item Description	Unit of Measure	Qty/MILE	Unit Price \$			\$ Amount	Notes
PREPARATION							
PLANING BITUMINOUS PAVEMENT (3" THICK)	SY	44587	\$	5	\$	222,933	
REMOVING CEMENT CONC. CURB AND GUTTER	LF	5280	\$	20	\$	105,600	
REMOVING CEMENT CONC. SIDEWALK	SY	2933	\$	20	\$	58,667	
SAWCUTTING FLEXIBLE PAVEMENT	LF	0	\$	5	\$	-	
GRADING					\$	-	
ROADWAY EXCAVATION INCL. HAUL (FOR PCC LANE,SW, AND SWALE)	CY	3080	\$	60	\$	184,800	
CEMENT CONCRETE PAVEMENT							
CEMENT CONCRETE PAVEMENT 12.5 INCH THICK	SY	0	\$	120	\$	-	
FURNISHING CONCRETE FOR CEMENT CONCRETE PAVEMENT	CY	0	\$	225	\$	-	
HOT MIX ASPHALT							
PREPARATION OF UNTREATED ROADWAY	SY	0	\$	2	\$	-	
CRUSHED SURFACING TOP COURSE (10"BELOW PCC)	CY	0	\$	65	\$	\cdot	
CSTC FOR SIDEWALK AND DRIVEWAYS	CY	323	\$	65	\$	20,973	
HMA CL. $1 / 2 \mathrm{IN}$. PG 70-28, 3 INCH THICK	TON	7617	\$	75	\$	571,267	
TRAFFIC							
CEMENT CONCRETE TRAFFIC CURB	LF	0	\$	30	\$	-	
CEMENT CONCRETE CURB AND GUTTER	LF	5280	\$	30	\$	158,400	
GENERIC STRIPING, INCL MARKINGS	LF	5280	\$	20	\$	105,600	
TRAFFIC ALLOWANCE	LS	1	\$	50,000	\$	50,000	
OTHER							
CEMENT CONCRETE SIDEWALK	SY	2933	\$	105	\$	308,000	
					\$	-	
					\$	-	
UTILITIES							
ADJUST MANHOLE (INCLUDES DRAINAGE STRUCTURE, VALVE BOX)	EACH	100	\$	2,000	\$	200,000	estimated based on sample mile on Division City GIS
UTILITY ALLOWANCES	LS	1	\$	50,000	\$	50,000	
STORMWATER ALLOWANCE (Based on Swale construction which may not be feasible)	SY	4693	\$	35	\$	164,267	
PER MILE SUB-TOTAL					\$	2,200,507	

Assumptions

1. Curb, gutter \& sidewalk - swale on one side will be preserved.
2. Other side $C \& G$ will be removed and replaced at wider limit.
3. Pavement section is suitable for grind and overlay for vehicle lanes
4. Bus (BST) lanes to be reconstructed with PCC pavement. Assume $12.5^{\prime \prime}$ PCC over $10^{\prime \prime}$ CSBC
5. Swale not shown, but used only for stormwater estimate

Side Right Division segment	(feet)			
Existing Pavment width			80	
Existing Right of Way width			100	estimated avg
Back of walk to back of walk			88	estimated avg
Existing sidewalk-swale-C\&G			0	
		Lanes		
Proposed section	HMA	5	60	
	PCC	2	24	
C\&G			4	one side
Curb separated Bicycle lane			0	
Roadside swale				
Cement Conc. Sidewalk			5	replace one side
			101	

Opinion of Project Cost - Planning 0\% complete MAINLINE - SCENARIO S2 Cleveland to the " Y "							
Standard Item Description	Unit of Measure	Qty/MILE		Price \$		\$ Amount	Notes
PREPARATION							
PLANING BITUMINOUS PAVEMENT (3" THICK)	SY	35200	\$	5		176,000	
REMOVING CEMENT CONC. CURB AND GUTTER	LF	5280	\$	20		105,600	
REMOVING CEMENT CONC. SIDEWALK	SY	2933	\$	20		58,667	
SAWCUTTING FLEXIBLE PAVEMENT	LF	10560	\$	5		52,800	
GRADING					\$.	
ROADWAY EXCAVATION INCL. HAUL (FOR PCC LANE,SW, AND SWALE)	CY	10120	\$	60	\$	607,200	
CEMENT CONCRETE PAVEMENT							
CEMENT CONCRETE PAVEMENT 12.5 INCH THICK	SY	14080	\$	120	\$	1,689,600	
FURNISHING CONCRETE FOR CEMENT CONCRETE PAVEMENT	CY	4881	\$	225	\$	1,098,240	
HOT MIX ASPHALT							
PREPARATION OF UNTREATED ROADWAY	SY	14080	\$	2		28,160	
CRUSHED SURFACING TOP COURSE (10"BELOW PCC)	CY	7819	\$	65		508,241	
CSTC FOR SIDEWALK AND DRIVEWAYS	CY	323	\$	65		20,973	
HMA CL. $1 / 2 \mathrm{IN}$. PG 70-28, 3 INCH THICK	TON	6013	\$	75		451,000	
TRAFFIC							
CEMENT CONCRETE TRAFFIC CURB	LF	0	\$	30		-	Center turn lane, no curbed channelization
CEMENT CONCRETE CURB AND GUTTER	LF	5280	\$	30		158,400	Assume between the curbs
GENERIC STRIPING, INCL MARKINGS	LF	5280	\$	40		211,200	
TRAFFIC ALLOWANCE	LS	1	\$	50,000		50,000	
OTHER							
CEMENT CONCRETE SIDEWALK	SY	2933	\$	90		264,000	
					\$	-	
						-	
UTILITIES							
ADJUST MANHOLE (INCLUDES DRAINAGE STRUCTURE, VALVE BOX)	EACH	100	\$	2,000		200,000	estimated based on sample mile on Division City GIS
UTILITY ALLOWANCES	LS	1	\$	50,000		50,000	
feasible)	SY	4693	\$	35	\$	164,267	
PER MILE SUB-TOTAL					\$	5,894,348	

LENGTH OF SEGMENT CLEVELAND TO Y MI 3.8 \$ 22,398,521

[^1]

Opinion of Project Cost - Planning 0% complete
COUPLET - SCENARIO 3 3

COUPLET - SCENARIO S3

RUBY

Standard Item Description	Unit of Measure	Qty/MILE	Unit Price \$		\$ Amount		Notes
PREPARATION							
PLANING BITUMINOUS PAVEMENT (3" THICK)	SY	21120	\$	5	\$	105,600	
REMOVING CEMENT CONC. CURB AND GUTTER	LF	5280	\$	20	\$	105,600	
REMOVING CEMENT CONC. SIDEWALK	SY	2933	\$	20	\$	58,667	
SAWCUTTING FLEXIBLE PAVEMENT	LF	5280	\$	5	\$	26,400	
GRADING					\$	-	
ROADWAY EXCAVATION INCL. HAUL (FOR PCC LANE,SW, AND SWALE)	CY	11440	\$	60	\$	686,400	
CEMENT CONCRETE PAVEMENT							
CEMENT CONCRETE PAVEMENT 12.5 INCH THICK	SY	7040	\$	120	\$	844,800	
FURNISHING CONCRETE FOR CEMENT CONCRETE PAVEMENT	CY	2441	\$	225	\$	549,120	
HOT MIX ASPHALT							
PREPARATION OF UNTREATED ROADWAY	SY	7040	\$	2	\$	14,080	
CRUSHED SURFACING TOP COURSE (10"BELOW PCC)	CY	1955	\$	65	\$	127,060	
CSTC FOR SIDEWALK AND DRIVEWAYS	CY	645	\$	65	\$	41,947	
HMA CL. 1/2 IN. PG 70-28, 3 INCH THICK	TON	3608	\$	75	\$	270,600	
TRAFFIC							
CEMENT CONCRETE TRAFFIC CURB	LF	0	\$	30	\$	-	
CEMENT CONCRETE CURB AND GUTTER	LF	5280	\$	30	\$	158,400	
GENERIC STRIPING, INCL MARKINGS	LF	5280	\$	20	\$	105,600	
TRAFFIC ALLOWANCE	LS	1	\$	50,000	\$	50,000	
OTHER							
CEMENT CONCRETE SIDEWALK	SY	5867	\$	105	\$	616,000	
					\$	-	
					\$	-	
UTILITIES							
ADJUST MANHOLE (INCLUDES DRAINAGE STRUCTURE, VALVE BOX)	EACH	100	\$	2,000	\$	200,000	estimated based on sample mile on Division City GIS
UTILITY ALLOWANCES	LS	1	\$	50,000	\$	50,000	
STORMWATER ALLOWANCE (Based on Swale construction which may not be feasible)	SY	5867	\$	35	\$	205,333	
PER MILE SUB-TOTAL					\$	4,215,607	

Assumptions:

1. Curb, gutter \& sidewalk - swale on one side will be preserved.
2. Other side C\&G will be removed and replaced at wider limit.
3. Pavement section is suitable for grind and overlay for vehicle lanes
4. Bus (BST) lanes to be reconstructed with PCC pavement. Assume 12.5 " PCC over 10 " CSBC
5. Bicycle lane to be curb separated from traffic on right
6. Swale not shown, but used only for stormwater estimate

Assumptions:

1. Curb, gutter \& sidewalk - swale on one side will be preserved.
2. Other side $C \& G$ will be removed and replaced at wider limit.
3. Pavement section is suitable for grind and overlay for vehicle lanes
4. Bus (BST) lanes to be reconstructed with PCC pavement. Assume $12.5^{\prime \prime}$ PCC over 10 " CSBC
5. Swale not shown, but used only for stormwater estimate

Opinion of Project Cost - Planning 0\% complete
MAINLINE - SCENARIO S3
Cleveland to the " Y "

Standard Item Description	Unit of Measure	Qty/MILE	Unit Price \$		\$ Amount		Notes
PREPARATION							
PLANING BITUMINOUS PAVEMENT (3" THICK)	SY	35200	\$	5	\$	176,000	
REMOVING CEMENT CONC. CURB AND GUTTER	LF	5280	\$	20	\$	105,600	
REMOVING CEMENT CONC. SIDEWALK	SY	2933	\$	20	\$	58,667	
SAWCUTTING FLEXIBLE PAVEMENT	LF	10560	\$	5	\$	52,800	
GRADING					\$	-	
ROADWAY EXCAVATION INCL. HAUL (FOR PCC LANE,SW, AND SWALE)	CY	9973	\$	60	\$	598,400	
CEMENT CONCRETE PAVEMENT							
CEMENT CONCRETE PAVEMENT 12.5 INCH THICK	SY	14080	\$	120	\$	1,689,600	
FURNISHING CONCRETE FOR CEMENT CONCRETE PAVEMENT	CY	4881	\$	225	\$	1,098,240	
HOT MIX ASPHALT							
PREPARATION OF UNTREATED ROADWAY	SY	14080	\$	2	\$	28,160	
CRUSHED SURFACING TOP COURSE (10"BELOW PCC)	CY	3910	\$	65	\$	254,121	
CSTC FOR SIDEWALK AND DRIVEWAYS	CY	323	\$	65	\$	20,973	
HMA CL. 1/2 IN. PG 70-28, 3 INCH THICK	TON	6013	\$	75	\$	451,000	
TRAFFIC							
CEMENT CONCRETE TRAFFIC CURB	LF	0	\$	30	\$	-	
CEMENT CONCRETE CURB AND GUTTER	LF	5280	\$	30	\$	158,400	Assume between the curbs
GENERIC STRIPING, INCL MARKINGS	LF	5280	\$	40	\$	211,200	
TRAFFIC ALLOWANCE	LS	1	\$	50,000	\$	50,000	
OTHER							
CEMENT CONCRETE SIDEWALK	SY	2933	\$	105	\$	308,000	
					\$	-	
					\$	-	
UTILITIES							
ADJUST MANHOLE (INCLUDES DRAINAGE STRUCTURE, VALVE BOX)	EACH	100	\$	2,000	\$	200,000	estimated based on sample mile on Division City GIS
UTILITY ALLOWANCES	LS	1	\$	50,000	\$	50,000	
STORMWATER ALLOWANCE (Based on Swale construction which may not be feasible)	SY	5867	\$	35	\$	205,333	
PER MILE SUB-TOTAL					\$	5,716,494	
LenGTH OF SEGMENT CLEVELAND TO "Y"	MI	3.8			\$	21,722,677	

Assumptions:

1. Curb, gutter \& sidewalk - swale on one side will be preserved
2. Other side $C \& G$ will be removed and replaced at wider limit.
3. Pavement section is suitable for grind and overlay for vehicle lanes
4. Bus (BST) lanes to be reconstructed with PCC pavement. Assume 12.5" PCC over 10" CSBC
5. Swale not shown, but used only for stormwater estimate

[^0]: Assujmptions:

[^1]: Assumptions:

 1. Curb, gutter \& sidewalk - swale on one side will be preserved
 2. Other side $C \& G$ will be removed and replaced at wider limit.
 3. Pavement section is suitable for grind and overlay for vehicle lanes

 Bus (BST) lanes to be reconstructed with PCC pavement. Assume 12.5° PCC over 10 " CSBC
 5. Swale not shown, but used only for stormwater estimate

